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Abstract-A stress analysis of fiber-reinforced composite cylinders and cylindrical segments is
presented. The analysis applies to thin as well as to thick walled qlinders wilh no restriction on
fiber orientation. other lhan thaI an individual fiber must remain at the same radial dislance from
the His. The cylinder may be suhj~'Cled to hygrothermal and m~'Chanical loads which may vary in
the radial and circumferential. bUI not in the a.'ial directions. Eljuations arc derived whil:h I:an be
used to calculate the displ'Kements. strains and stresses inside the material.

I. INTRODUCTION

Cylinders and cylindrical segments arc important structural elements. For this reason many
procedures have been put forth to analyse such elements made of isotropic materials.
Relatively few analyses have been proposed pertaining to fiber-reinforced composite cyl­
inders.

Shell approximations applicahle to closed cylinders have heen presented by many
authors. and a detailed survey can he found in Noor ('( (/1. (1991). Analytical solutions
taking into account three-dimensional variations in stresses and strains have been developed
by Chou and Achenbach (1972). Noor and Rarig (1974). Srinivas (1974). Grigorenko ('(
(/1. (1974). Chandrashekhara and Gopalakrishnan (1982). Hyer e( (/1. (1986). Ren (1987).
Ilyer (1988). Roy and Tsai (1988). Noor and Peters (1989). Spencer ('( al. (1990). Varadan
and Bhaskar (199 I) and Lee and Springer (1990). All these investigators. except the last.
analyse only orthotropic cylinders. Lee and Springer's analysis is for composite cylinders
of arbitrary layup. but treats only radial stress distributions. No analysis seems to be
available for generally anisotropic thick composite cylinders in which the stresses and strains
vary both radially and circumferentially. Also. there appears to be no literature pertaining
to the stress analysis of cylindrical segments.

Owing to the importance of the problem and to the lack or suitable analytical
approaches. this investigation was undertaken to study the hygrothermal-mechanical
behavior of composite cylinders. In particular. the objective was to develop analyses ror
calculating the behavior of fiber reinrorced composite cylinders and cylindrical segments
subjected to temperature. moisture and mechanical loads. (n this paper the governing
equations arc described. Solutions applicable to closed cylinders arc presented in a com­
panion paper (KolI~tr ('( al.. 1992). Solutions ror cylindrical segments and fiat plates joined
by rounded corners will be presented in subsequent publications.

An analytical approach was employed in this investigation instead or a finite element
method. For large. thick structures finite clement analysis may require excessive computer
memory and computational time; in contrast. the method proposed here requires less
computational effort.

2. PROBLEM STATEMENT

We consider a cylinder. or cylindrical segment (are 00 ). made or " layers or uni­
directional fiher reinrorced composites (Figs I and 2). There is no restriction on either the
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x
Fig. I. Geometry of the closed cylinder.

number of plies or the orientation (ply-angle) of the fibers in each ply. Hence the cylinder
may be "thick" and the layup may be unsymmetric. However, the cylinder must be long,
so that the length L is large compared to the thickness h and to the inner " and outer ,0
radii (hi L « \, ,olL« \, ,'IL « I). These approximations imply that edge effects are
neglected.

The inner and outer surfaces of closed cylinders may be fixed or free (Fig. 3). The
lengthwise edges of cylindrical segments may be fixed. simply supported. or free (Fig. 4).

Both the cylinder and the cylindrical segment may be subjected to hygrothermal and
mechanical loads. These loads may vary in the radial, and circumferential () directions,

1l

Fig. 2. Geometry of the cylindrical segment.
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Both surfaces
are free

©
Inner surface is free.

outer is fixed

Inner surface is fL'l:ed.
outer is free

@
Both surfaces

are fIxed

Fig. 3. The conditions on the inner and outer surfaces of the closed cylinder.

but must be independent of the axial coordinate x. Thus. the temperature d T and the
moisture content 6e inside the composite may vary with rand 0 but not with x. Here dT
and de are known temperature and moisture content relative to prescribed reference values
7: and er

dT(O,r) = T- T" dc(O.r) = e-cr • (I)

Met:hankal loads may bt: imposed along the edges and on the surfaces as shown in
Figs 5 and 6.

For a dosed cylinder. loads t:an be imposed on the inner and outa surfaces in the
radial. tangential. and axial din:t:tions. These loads. denoted by p;. p;" p~ and p;', p;:. p~'.

may vary with 0 but not with x. Axial loads may also be placed along the edges of the
dosed cylinders and these loads arc denoted by N,. In addition, the cylinder may be
subjected to a torque T and a bending moment M. The only restriction on the mechanical

Both edges are fIxed

Both edges are hinged

One edge is fued.
one is hinged

One edge is fued.
one is free

Fig. 4. The conditions along the lengthwise edges of the cylindrical segment.
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Fi,:. 5. Thl' loads "11 the dosed cylinder.

loads is that they must he in equilihrium. i.e. under their comhined action the cylinder
cannot undergo rigid hody motion.

;\. cylindrical segment with edges unsupported may have edge loads on them as shown
in Fig. 6. There may he axial QI and shear loads Q, on the edges. The lengthwise. straight
edges may also he subjcded to loads Q \ which ad normal to the plane of symmetry. or to
distrihuted moments QI' All these loads must he independent of x. In addition. the segment
may he suhjecled to a torque Fand a hending moment .\1. As in the case of dosed cylinders.
the only restrictioll Oil thesc loads is that the loads must hc in equilibrium and must not
result in rigid hody motion.

p'
r

j,Tle.r: //
j,c(e.r~

t:2
Q2~ ..... :

"- fI
"-

"-
/I Q

2

Fig. Ii. The loaus on the <:ylinurical segment.
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A cylindrical segment supported along both of its longitudinal edges (simply supported
or fixed) or built in along one edge and free along the other (Fig. 4) may be subjected to
radial. circumferential. and axial loads on the inner and outer surfaces (Fig. 6). These loads
may depend on ebut must be independent of x.

The objective is to find the stresses and strains inside the composite under the combined
temperature, moisture and mechanical loads described above.

3. GOVERNING EQUATIONS

The analysis is applicable to loads which result in small deformations and linearly
elastic material behavior. As described in the problem statement, all the loads, and hence
all resulting strains and stresses are independent of the axial coordinate x. Then, the
equations of equilibrium are (Love. 1944)

all ca, a, (',",+ - - - - - -- = 0 (2)
r cr r r cO

where. as usual. IT and r represent normal and shear stresses. The strain displacement
relations arc (Love. 1(44)

('11'

I:, = ('r'
I\' 1 (11'

LII = + -- :'(}'r r c

(3)

where I: IS the normal strain and I IS the engineering shear strain. U,l' and I\' are the
displacements in the x, {/ and r directions.

For the Ith layer (ply). in the x, O. r ofr-axis coordinate system the stress-strain relation­
ship is (Tsai. IlJXX)

r", 0

r" 0

(4)
y",

I:, - !X,6T -IJ,6('

/:" - !x"6 T -IJII6('

1-:, - !X,6T- fJ,6('

o Cth
o C~h

o C Jh

o C~~ C~5 0

o C54 C 55 0

o
o

('II CI~ ell 0

e~1 e~! e~l 0

ell C I1 C1\ 0
=

all

where ('" ( = C". i.j = 1..... 6) are the components of the stiffness matrix: :x and fJ are the
thamal and moisture expansion coefTIcients.

TCII/perature alltl moislure
Temperature and moisture affect the strain in a similar manner. For simplicity. here­

after we include only .1 T in the analysis, with the understanding that the moisture content
.1(' can be included in an identical manner as the temperature.

The known temperature .1 T may be a function of rand O. and may be expressed in
the form of a Fourier series in the () direction and in the form of a power series in the r
direction

(5)

where .1 Tli and .1T~ are constants and are given by Kollar el al. (1992). When r is in
parentheses. i is an exponent (not a superscript indicating inner radius).
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Strains and displacements
The strains inside the composite may depend on r and g. For analytical convenience

we express the strain in three parts

(6)

Co is the function of r only. CF and CB depend on both eand r. Furthermore. the solution is
developed in such a way that in the case of Co and CF the axis of the cylinder remains straight.
while in the case of CB the axis of the cylinder is curved. The displacements corresponding
to each of these strains are identified by the subscripts o. F and B. and are

II' (<'C. e. r) = II~ (.'1:. e. r) + 1I~(8. r) + II~ (x. e. r)

l.l(X.O,r) = r~(x. e,r) + 1'~(O,r)+ l·~(X. fJ,r)

II"'(X. e. r) = 1I"~(x. O. r) + 1I"~(8. r) + I\·~(x. O. r). (7)

The superscript I refers to the Ith layer. To simplify the notation. we omit this superscript
when dealing with one layer in Sections 4-7. We retain the superscript I when analysing
multilayer laminates in Section 9.

Our task is now to derive the appropriate relationships for the nine displacement terms
on the right-hand side of egn (7).

4. RADIAI.LY VARYIMi STRAI:"S AND STRESSI'S

First we analyse a prohlem in which the strains. and consequcntly the stresses. vary in
the r direction only. In this casc the tcmperature within the composite must vary with r
only. This condition is met whenj = 0 in cqn (5). Thus the expression for L1. l' becomes

L1. l' = L L1. 1'u,(r)'
t.-. H

(X)

where L1. T." is defined in KolI:lr t!t al. (1992).
The cylinder or cylindrical scgmcnt may undergo three translations and three rotations

about the x.y.: axes. In the problems considered here all these rigid body motions arc
absent. However. for the purpose of the analysis we retain two of these motions: thc
displacement along and the rotation about the x axis. Then. the most general form of the
displacement licld, which satisties the condition that the strain is a function of r only. is

(9)

where II". IIh. t·". l'h arc constants. By using these displacements. the strains [egn (3)) and
the stresses [egn (4)) arc evaluated. and the resulting stresses are substituted into egns (2).
This procedure yields

( 10)
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Table 1. Definition of the parameters in eqns (10) and (13)

J,=u.C:.

<5: = u,(C:,-c',)+t"b(C::-Cd

<5, = (·,(C:.-2C.. l

1. = - ~To,{x,IC" - (I + ilC.d + X,,( C::- (I + ilCd + x,(C:, - (I + ilC),)- x,,,(C:. -( 1+ i)C,.))

Ii = O. I. ...)

. rc;;.:.
I. : './ c::

1505

f(r)=,.lnl~-C (-R
r
.)'" if (i+ll'C., C::=O

_(1+ ) "

The tirst two of the above equations result in the following expressions for II., l?

Equation (lOc) yields

( II)

(12)

e5 h e5~. J.J, d,. i. and J;(r) are parameters defined in Table I. R is a reference radius. A
suitable choice for R is the radius of the mid-surface, U•• Ub. Ue• U,j. v•• Vb, Vc , V,j, A h A 2

are as yet undetermined constants, Thus, there are a total of 10 unknown constants for
each ply.

Inspection of eqns (II) and (12) shows that U,j is the rigid body displacement in the
axial direction. and L',j(rIR) represents angular displacements about the x-axis.

The strains and stresses ctllculated from the above displacements 11o• vo• Wo are identified
by the subscript o. i.e. the resulting strain components are: t:,o. £00' trOt {Oro, {"o. {,I/o. and
the resulting stress components are: 0"0' 0'/10. 0"0' rOm. r"o, r.oo.

5. RADIALLY AND CIRCUMFERENTIALLY VARYING STRAI~S AND STRESSES
(STRAIGIIT AXIS)

Next we consider a cylinder. or a cylindrical segment. in which the strains and the
stresses may vary with rand O. but where the axis of the cylinder remains straight. The
radii of curvature of the axis me related to the displacements through the expressions

at () = 0;
1 a~w(x. o. r)" - ------- Dx 2

n:
at (} = i' ( 14)

,,' und ,,' are the radii of curvature in the x-y and x-= planes.
The following form of displacements satisfies the requirement that the axis remains
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UF((:I,r) = L {u,(r) sin j Jo}- L {u;(r) cos j ~ o}
1= I {I 1= I 0l}

l'de. r) = L {l',(r) sin j.~ e}- L {l';(r) cos j ~. o}
1= I 0", ~ r 0"

II'F(O.r) = L {11',(r)cosj~- O}+ L {II';(rlSin j ~ o}.
1= I / " ,~ I I"

( 15)

Note that the summation of the series starts at .i = I. The oth term was discussed in
the previous section. Correspondingly. the temperature [eqn (5)] is also only evaluated for
j ~ l. i.e.

In the following we derive expressions for /I,. I'{' II', and u~ 1';. II'~ For simplicity we
only show the daivation for one of the terms in each of the displacements in eqn (15) and
in the temperature [eqn (16)], The terms to be discussed in detail arc (j ~ ))

n:
1I,(r) sin.i ) 0.

/"

n:
l',(r) sin.i) O.

/"

n:
1I',(r) cos i o.

, ()" [ L flT,,(r),jcos/ ~ O.
/_ 0 I (I

( 17)

Subse4uently. the results will be generalized to indude every t<.:rm or the seri<.:s.
The strains [eqn (3)J arc cakulated with the displacemcnts giv<.:n hy eqn (17). Th<.:

stresses [eqn (4)J arc then evaluated with these strains togeth<.:r with the tempaatun: given
in eqn (17), Substitution of th<.: resulting stress<.:s into the equilihrium equations [eqn (2))
yields

( I~)

where ilij and the parameters B,. B~. B1 are defined in Table 2. Equation (Ig) is a sixth
order ordinary equidimensional differential equation system. Solution of these equations
yields 1I,(r). l',(r). 11',(r).

Solution of the homogeneolls equation
When the temperature dilrerence is z<.:ro (fiT = 0). BI• 8 2 and B 1 ar<.: zero (Tabk 2).

and eqn (lg) reduces to

( )lJ)

For this homogeneous cquidimensional ditrerential equation syst<.:m, we s<.:<.:k a solution
of the form

00)
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Table :!. Detimtiun of the symbuls in e4n ( IS)

[ ": I'"J .(/ 11 ')'1n" = - C" :-;.,. - -.;- + C.hi' /-/- --.(",- r ('r co ,-

," _ "( 11 ': In" = -C.,.;--. -C,d' ',-) --;
cr- f "; r

It'll I 11
n·,=-,.;--I /-(C"..-C,,)-<- :',-/ (C.. +C::J

- r I" f" r o'

I,' 11 ;: I
nIl = -C'h - .;-- 1/-/ +C:hl,',' -;

r C"" . ,f r-

I,' 1l I 11
n,; = - - ,-, /" (C .. +C,,)+ , ',',-(c .. +c,,)

, ,', I" ,. "

I': I " I (11)' (n" = -C"'" -c,,- -,- +c" -; +c.. 1' /-1- --,
cr" r (",~ " ,.

II,,~ [~,I\r", 'l','(~'

II, [~,M,/ 'k 1I~,
II, '" ~ [AT,/ '( 'I, - Ii + I )1/ , )I

til ~ ('''I:t,+(·~~l''+(·t-.I:tr+Cf'll'\:XdJ

if!'~ ('~ll:\ t-('~~l,,+('!\:Xr+C:t\l'I'

tIl ~ e"l, +('1,:1" +("11:, +('11'\'%,/1

1507

where i'. G;', G;. G;' arc constanls. By substituting eqn (20) into eqn (19). and after algebraic
manipulations. we obtain

E(i')[~;] =:: 0

G"
I

(21 )

where the matrix E depends on the exponent i' and is dctined in Table ),
For a non-trivial solution of eqn (21). the determinant of the E matrix must be zcro

det(E) = O. (22)

The determinant of E is a sixth order polynomial in y. Since there arc only even powers of
}', the polynomial can be reduced to a third order one, and this greatly simplifies the solution.

The case when j(n/OQ ) #: I. When j(n/OQ ) #: I. eqn (22) provides six independent
solutions for (, and these we denote as i'" I~ •...• 16' Note that I'. I~"'" 16 can be real or
complex numbers. The displacements {sec eqn (20)] corresponding to each or the six y
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Tablc: 3. The matrix E in eqn (21)

values can be expressed as

uh<'l11(r) = G" (~).
" " R (r)'"'hpm f'I',k (r) = G,k R . ( r)",hom I'

lI'k (r) = G'k R (23 )

where k = I, 2..... 6.
The solution of Ihe homogeneous equation [eqn (llJ)1 IS then the sum of the SIX

displacelllen ts

u;'<''''(r) = L u~""(r). 1';<'I11(r) = I I'~~""(r).
• - I , " I

1I';"""(r) = I H·;~''''(r).
, - I

(24)

These equations contain I X constants (1;'" G;•. (;;-. (k = 1,2..... 6). The vectors
[G;'" G;~. G;-.I' lIlust satisfy eq n (21). I knce only six of these I XG-values are independent.
We may select either G;', , (1;. or G;" as an independent variable and denote the one selected
by the symbol G". Thus we write

(25)

By substituting the first. seeond or third of eqn (25) into eqn (21) we obtain

[G;,] = -G [E!! E!ll '[E!I} (G;', == GldG" 1< E ElJ Ell'< l1
or

[G;'k]=_G [Ell ~llllEI!J. (Gj', == Glk )
G" I' E Ell El !,k lI

or

[ G;k] == _ G [E I I EI!llEll] (Gik == Gjk ) (26)Gl' Ik E E!! E!J'Ik ~I

where Ell. E,!. etc. arc the clements of the matrix E (sec Table 3) with i' replaced by i'k'
We select the one of the above three equations for which the coetftcient matrix is non­
singular. Once the six unknowns Glk (k = 1.2....• 6) arc known. G;',. G;~ and G;" can be
evaluated from the applicable expression in eqn (26).

Tht! ClISt! Il'ht!/1 j(n!O,,) == I. The above solution is inapplicable when j(r:(},,) = I. [n
this case the determinant of the matrix E has only five independent roots. ft can be shown.
e.g. by the use of a symbolic manipulator, such as "Mathematica" (Wolfram, (988). that
two of the,' roots have the same value and are equal to zero. We arbitrarily select ,', and
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~. ~ as the identical terms

Now. the expressions for the displacements in eqn C:!3) become

1509

em

whum(r) = G"} 5 ,5

.hum( ) - G"
~~ i/o r - i6'

(28)

(29)

We evaluate G'/s. Gj's and G'j/o. G'f/o from eqn (26). The components of E (Ell' E 12• etc.) are
calculated by setting (in Table 3) ~. = ~'S = 0 and~' = "6 = O. The result is

With reference to eqn (15) it can be shown that GiS and G,6 represent rigid body
displacements in the /I = 0 direction.

Sincc ~', = ~'I,' the displacements given by eqns (28) and (29) arc identical. We now
'seck an indepcndent sixth solution of the form

(31 )

By suhstituting eqn (31) into eqn (19). after algebraic manipulations. wc ohtain

(32)

where 1\1 and Nan: ddined in Tabh: 4. Equation (32) requires that the following equalities
be satisfied

and [
KII] [Ill]

M ~;.: +N ~;: = o.
K;'i, Lj'~

(33)

The coellicicnt matrix 1\1 in the first of eqn (33) is singultlr, and hence the solution of
this equation for [1~6 I;'(, Ij'i,] r contains one arbitrary pammeter. We denote this pammeter
by G,o and write

(34)

Table 4. The matrices in eqn (32)

[

C.. C,.

:\1 = C:. (C,,+Cu )

C,. (C,,+Cu )

[

0

:'oj = -C..

-(C•• +C.,1

c.,
o

(C'., +C.,)]
(C,,+C44 )

o
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Substitution of eqns (34) into the second of eqn (33) yields

(35)

where (similarly to Gj6 ) ~6 is an arbitrary parameter.
The displacements given in eqn (28) and eqn (31) are all appropriate solutions. Hence.

if we multiply the displacements in eqn (28) by the constant KJ6 /GJ s and add the resulting
displacements to the displacements in eqn (31), we obtain another set of acceptable dis­
placements. The results are

where

L • K" L r
I\""""(r) ::::: II-'''''''(r) + ~_'~ 1I'''''I11(r) ::::: G· In··

II> I" Gf~ IS I" R (36)

(37)

Elluation (36) is thl.: sixth inth:pl.:mknt solution WI.: have been seeking. The homo­
geneous solution for l(rr./O,,) :::: I thus becomes

il

lI~""'(r):::: L u;~""(r),,-I

where for (k = 1,2, ... ,5)

( r)'"uhol1l (r) :::: G"-" I' R •

and for k = 6

I>

I';""'(r) = L l'~t"(r),
, -I

(r)"rhom(r) - G': -
/' - Jk R '

I,

Ir~"m(r) = L w~k""(r)
k -I

(38)

(39)

r
l'hO"'(r) = K" -G In

1 6 II.l /6· R' (40)

These equations contain a total of six unknowns Glk (k = 1,2, ... ,6).

Particular solutiofl oj the ifl!lOtr/ogent'ous equation [e(jn (18)]
A particular solution of the inhomogeneous equation «elln 18») can be written in the

form

(r)"'1uj"h{r) ::::: L Pi', R .
J,.., 0

(41 )
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Substitution ofeqn (41) into eqn (18) yields

1511

[
P~,]

I F, Pi." = I tlT"R'+ I
t= 0 1= 0

P"
"

rr
q~) I)

u

q~ - (i+ 1)q~

(42)

The matrix F, is the same as the E matrix in Table 3. with i' replaced by (i+ I). The
parameters q,. q> qJ are given in Table 2. The vector [P~, Pi; Pi;]T is obtained from the
equation

[
PU]
P:,' = 'F I, -'tlT R'+ I

I' l " It

P",
"

rr
q~) I)

u

q ~ - (i+ I )el ~

(43)

The matrix F is singular when anyone of the roots of eqn (22) (i'l. i'~.···.Yh) is
equal 10 (i+ I). This dillkul1y could be overcome with considerablc mathematical and
computational complexity. Alternatively. this singularity can be removed without signifkant
loss in accuracy by changing slightly one of the stilrness values in eqn (4),

Ge"eral solutio" (!l tlte i"llOmo,l/C'''C'ou,\' C'lfUl/tio" klf" (I X)]
Solution of eqn (I X) is the sum of the homogeneous and the inhomogeneous solutions

u,(r) = u~""'(r) + u;""(r). I',(r) = I'~""'(r) + I';""(r). 1I',(r) = 11'~""'(r) + 1I';""(r) , (44)

The inhomogeneous displacements are given in eqn (41) and the homogeneous dis­
placements by eqns (38)-(40) for )(7[/0,,) = I and by eqns (23) -(24) for )(rr/Oll ) :1= I.

ComplC'te solutio"
The analysis presented thus far pertains only to the first part of the series [eqns (15)

and (17)]. The second part of this series is

*() . ,7[0-u) r cosiO'
"

7[ 7[
-vj(r) cos) 0 O. wj(r) sin) 0 O.

" u
[ L tl T~(r)'J sin) ; O.
,.0 0

(45)

The solution for these terms proceeds along the same line as for the "unstarred" terms
in eqns (18)-(44). We merely need to replace in eqns (18)-(44) the "unstarred" constants
(C. L. [. R.) with "starred" constants (C*, P, [*, R.*),

6, RADIALLY AND CIRCUMFERENTIALLY VARYING STRAINS AND STRESSES
(CURVED AXIS)

We consider the problem of a cylinder whose axis has curvatures in the x-y and x-=
planes (II:Y, 11:'). We now write the displacements in the form

Un(.\'. O. r) = Uri (x. O. r) +uiHx. 0, r), ['n(x. O. r) = l'i1(x. O. r) +I'n(x. O. r).

II'H(X. O. r) = 1I'j';(x. O. r) + II'R(X, 0, r). (46)

The first displacements on the right-hand side (superscript y) are the displacements due to
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curvature in the x-y plane. and the second terms (superscript z) are the displacements due
to the curvature in the x-: plane. First. we derive expressions for Uh. rh. Wh. These
displacements are written as

Uh(X.O.r) = "Yxrcos O+Uk(r) sin O.
\"Z

l'h (x. O. r) = "Y~ sin 0+ l'k (r) sin 0,

(47)

These displacements together with the strain-displacement eqn (3). stress-strain eqn (4)
and the equilibrium equation (2) yield

(48)

A" is the same as a" in Table 2 with j(rr./IU set equal to I.
By comparing eqns (48) and (18) we observe that the homogeneous form of these

equations (i.e. the right-hand sides set equal to zero) are similar. Thus, by referring to eqns
(38)~(40) we can write the solution for 1111. r1,. 11'1' as

1I1,'''''''(r) = L 1I1,lt'" (r). I'I,h""'(r) = L l'1,~"II1(r). lI'I'/"II1(r) = L 1\'II~"I11(r) (49)
,~I *-1 *_,

where for (k = 1.2..... 5)

( r):"
I vh..", (r) _ II'"
'Ilk - l R .

and for k = 6

(r)i' (r)i'l'I,~""'(r) = Ill' R ' 1I'1,~"Il1(r) = "kw R (50)

IIlt~"Il1(r) = J~",
r

r yhull1 (r) = J" - flY In -flo 6 f> R'
r

lI'yhUIl1(r) = flY In --~
fib 6 R' (5\ )

Note the similarity with eqns (39) and (40) ; fI and J correspond to G and K, the only
ditTerence being that fI and J are now evaluated by eqns (25), (26) and (37) withj(1tWJ = \.

The exponents '/k are the five independent roots of eqn (22) with j(1t/Ou ) = I and
with (j = O. The above homogeneous solutions [eqns (49)-(51)] contain six independent
constants fir (k = 1,2, ... ,6), where fI~ represents rigid body motion in the 0 = 0 direction.

A particular solution of the inhomogeneous equation [eqn (48)] is

Substitution of eqn (52) into egn (48) yields

-3CH +CZZ

Czz-CH-2CzJ

Cz6 +2(CJh + el)] .. I
CZ2 +3CH +2C2J

Czz+CH-4CJJ
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The displacements caused by curvature I(Y are [eqns (47). (49) and (52)]

Ub(X. OJ) = I(vxr cos 0+ UH (r) sin 0 = I(Y xr cos 0 + (UHhom (r) + UHIOh (r») sin 0
, ,

l'b(X. OJ) = I(Y .~- sin 0+ l'H(r) sin 0 = "Y .~- sin 0+ (rHhom (r) + l'HIOh (r») sin 0

1513

x2 ~~
Il'b(x.8J) = -"Y~COsO+II'H(r)cosO= -"Y~coSO+(Il'Hhom(r)+Il'H,nh(r»)cosO, (54)- -

The displacements caused by curvature 1(' can be derived in a similar manner. The
result is

U~(x. O. r) = I(lxr sin 0 - u~(r) cos 0 = I(l xr sin 0 - (lI~hom (r) + U~IOh (r») cos 0

x! x!
l'~(x. OJ) = -,,' Tcos 0-l'~ (r) cos {} = -""2 cos 0 - (l'~hom(r) + l'~IOh (r») cos 0

1I'~(x,OJ) = _",x
2

sin8+lI'~(r)sin8= -",.~! sin8+(II'~hOm(r)+\I·~IOh(r»)sinO. (55)
2 -

The homogeneous and particular solutions are the same as given before by eqns (49)
and (52) for the y component. The differences are that Ilku. He. IlkW

• HL J~u. Jr and "Y
are replaced by Hku, Ilk

v. W"w. H k• J~u. J~v and 1('.

7. STRAINS AND STRESSES

Using the expressions for the displacements derived in the foregoing sections. the
slrains can be calculated from e4n (3) and the stresses from e4n (4), In the analysis of
cylinders and cylindrical segments we will make usc of the stresses obtained in this manner,
Therefore. the stresses arc tabulated in Table 5. The results in this table show that the
dependence of the stresses on rand 0 arc separated. The stress components with a "hat"
depend only on the radius r.

8. NUMBER or UNKNOWN CONSTANTS

The expressions for displacements contain a number of unknown constants. as sum­
marized in Table 6. These constants must be determined by applying continuity conditions
across ply interfaces. conditions for no rigid body motion. and appropriate boundary
conditions,

9. CONTINUITY CONDITIONS

At each ply interface the displacements and three of the stresses (0',. r,lI. rrx) must be
the same in adjacent layers. Thus. at the interface between the / and /+ I layers (Fig. 7) the
continuity conditions given in Tables 7-10 must be satisfied.

For uo• Vo and Wo the equations in Table 8 represent (n - 1)*\0 equations for a
composite made of n layers. Each layer contains 10 unknowns, so the total number of
unknowns is 10*n. From the above set of equations all but 10 of these unknowns can be
determined.

For UFo L'F and WF the equations in Table 9 represent (n - 1)*6*2 equations for an n
ply composite for every Fourier term. In each layer there are 6*2 unknowns for each term.
Of these (n - 1)*6*2 can be determined from these equations. There remain 6*2 unknowns
for each term.
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Table 5. The displacement. temperature and stress terms

UO·l"110 "'" UF' f ... H.'F

IT IT
II lI(r)sln/~1/ -u:'tr)~os /- II, . II" II"

IT IT
1" 1",(r) sin; .. 1/ -I:'tr) ~os I (I~, 1/

1/"

IT IT". "',(r) cos I - /I "':'tr) sin I -- 1/
1/" ' II"

tJ.T I tJ.T",r' [ I tJ.T,,(rl'}osj;O [ I tJ.T~(r)}inj~1/
I_I) r. () . l) ,.0 1/"

IT IT
fT, (1,\. (J" = a"cos; III (1~, = a~,sinIT/I ":0 = a;H cos 1/ t1~R = a;H sin 1/

I" I"

IT IT
fT" (JOn (1,,/ = a", cos; T 1/ rrf~, = .. ' ;-11 (//)1\ = G'~H cos iJ (f~H = a;'H sin /I(111, Sin

(" II"

IT It
fT. fT". fT" = ri" ~LlS ; ..... II ,.,. = .. ' ; II (1;'11 = " cos II (1~H = <f;H sin II

II" "
rT q Sin

Ii"
fT. H

IT It
f rtl Crll "

t 'lll = f"'1 \iin ; 1/"
1/ 'C~'I = i· cos j 1/ t ~~'ll =

.,
sin II r~1I1t = i:oll l:OS (}

rO, . 0" (,till

IT It
I" I"" !r" .- f", sin / J (I r;" f· cos; (I (,\" =

.,
sin II r:,n = £;," cos 0-- t,\11

I" '" ' (I"

It •• . . 1t
t'll r ,0 .. r \0, = i,o! cos 'On II r~'1 = r ,0, sin 1 O" (I r:/l li i:1I1I l'OS (1 r:!l1I = i~1!1I sin 11

Tahle o. The unknown eonslanls in the ,i1spla~emenls.continuity. no rigid hody motion and houndary condilions

u:.. l':,. w:. u;'. I': .w:' u:1.,,:,. w:,
IT

I
It

I (I"
'f I

I II" = I

Unknowns A',. A'~ G~I k= 1,2•...• 6 1('. If:'
(one layer) u~. u~. u~. u~ e'· 1= 1.2..... number of Fourier terms k = 1,2..... 0',I

t'~. l'~. l'~. l'~ ,..:', J/~/.

Number of unknowns 10./1 (2.6)11 2+(2.0)/1
for each Fourier term

Continuity conditions 10. (/I-I) (2.6)(/1-1) (2.0)(11-1)
for each Fourier term

No rigid body motion uJ = o. I.J = 0 G,', =0. G;; = 0 In' = o. If:' = 0

Boundary conditions X 2.6 2.5 2.6
if there arc no rigid for each Fourier term
body motions

l·th layer

Fig. 7. Nurnhering of the plies.
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Table 7. The continuity conditions at the interface between the I and (/+ I) layers

u'(x.OJ) = u'·'(x.OJ)

['1(X./lJ) = l·I·'(X.IJJ) (, = ,"') (/ = 1.2... ..n-I)

...I(x. /lJ) = ...1., (x. /lJ)

11;(.~. /lJ) = 11;' '(x. OJ)

r;,,(x.OJ) = r~: '(x./lJ) (, = ,1>,) (/ = 1.2.....n-I)

r~(x./)Jl = r~' '(x. /lJ)

Table !l. The continuity conditions for u [ ..

The displacement continuity conditions

u~ = U~ .. 1

u;(,) =u;"(,) (,=,"')

,.~ = t'.~" I

r'~ = 1'~ .. 1

11":,(') = 11":: '(,) (, = ,"')

Thc stress wnlinuily conditions

IT:..(,) = IT:.: '(,)
r;" .. (r) -" r:,:.. '(r) (r = r " ')

r:... (r) ,." r:.:, ,(,)

Table 9. The continuity conditions for u, • ", • 11",.

The displacement continuity condilions

u;(r) = u;' '(r) u:'(,) = u~t ,.(,)

,«r),." [';"(r) l':'(,) = l':"'(,) (, = ,"')

...;(r) = 11';- '(r) 1I";'(r) = 1I·;"·(r)

The slress continuity conditions
a:,(r) = a:: '(r) a:;(r) = a:,. "(,)

i:/I,(r)=i:,:"(r) i:~,(r)=i:,r,"(,) (r=r"')

i:,/(r) = i:,~ I (r) i::,(r) = i::/'·(r)

Table 10. The continuity conditions for u•• l·•• "'.

The displacement continuity conditions

u~:<,) = ul:' '''(r) ul1<') = u::""'(,)
l'::<') = 1'1:""(,) 1'11(') = d:""'(,) (, = ,I.,)

"':i(') = ...::+ '16(,) ...:r(,) = ...::.11,(,)

The stress continuity conditions

ti:~(r) = a:~' '''(r) a:r.(,) = a:~' ''''(,)
i;;.(,) = i:~~ '''(r) i~.(') = i::,~ 11,(,) (r = ,"')

i::.(,) = i~~ "'(,) i~.(r) = i~~ ''''(,)

1515
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For UH. l'B and II"B the equations in Table 10 represent (n - 1)*6*2 equations for a
composite made of n layers. Each layer contains 6*2 unknowns. Furthermore "Y and ,,' are
also unknowns. Hence the total number of unknowns is 6*2*n + 2. From the above set of
equations all but I~ of these unknowns can be determined.

10. RIGID BODY MOnO;\;

As was discussed above (eqns 1L 12.28 and 50). rigid body motion is represented by
the constants u~. l'~. G; ,. Gi,." HI

5'. HIt. In the absence of rigid body motion these constants
must be zero in one of the plies. For convenience. we prescribe these constants for the
innamost ply. Thus. for the displacements 11,,.1',,. \I'., we have

IIJ = O. I·J = O. (56)

For 11,.1',. II',. (j(n/II,,) = I) and for 1I8.1·B' \I'B the conditions for no rigid body motion are

G)l = O. G;~ = 0

H;Y = O. H;' = O.

(57)

(58)

Equations (56)~(5S) eliminate 3*2 = 6 constants. The remalntng constants must be
found with the aid of the continuity and boundary conditions.

II. 1l0lJNDi\R Y CONDITIONS

The conditions for rigid hody motions and the continuity conditions provide some hut
not all the equations needed to determine all the unknown constants in Tahk 6. The
additional equations required to determine all the constants arc provided hy the houndary
conditions. Appropriate houndary conditions for dosed cylinders arc presented in a com­
panion paper (Kollilr ('I (II.• 1992). Boundary conditions for cylindrical segments. and flat
panels joined by curved corners will be described in subsequent puhlications.

.·"~/",,,1,,clt/t"/II"III.' -~ This work was supporl.:d by an Il11r.: Kor:'1I1yi fdlowship provid.:d to LI'K through lh.:
Thomas Clwlnoky hllllldalion. This support is grat.:fully a<:knowkdg.:d.
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