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Abstract—A stress analysis of fiber-reinforced composite cylinders and cylindrical segments is
presented. The analysis applies to thin as well as to thick walled cylinders with no restriction on
fiber orientation, other than that an individual fiber must remain at the same radial distance from
the axis. The cylinder may be subjected to hygrothermal and mechanical loads which may vary in
the radial and circumferential. but not in the axial directions. Equations are derived which can be
used to calculate the displacements, strains and stresses inside the material.

1. INTRODUCTION

Cylinders and cylindrical segments arc important structural elements. For this reason many
procedures have been put forth to analyse such elements made of tsotropic materials.
Relatively few analyses have been proposed pertaining to fiber-reinforced composite cyl-
inders.

Shell approximations applicable to closed cylinders have been presented by many
authors, and a detailed survey can be found in Noor ¢ al. (1991). Analytical solutions
taking into account three-dimensional variations in stresses and strains have been developed
by Chou and Achenbach (1972), Noor and Rarig (1974), Srinivas (1974), Grigorenko et
al. (1974), Chandrashekhara and Gopalakrishnan (1982), Hyer er af. (1986), Ren (1987),
Hyer (1988), Roy and Tsai (1988), Noor and Peters (1989), Spencer et ¢l. (1990), Varadan
and Bhaskar (1991) and Lee and Springer (1990). All these investigators, except the last,
analyse only orthotropic cylinders. Lee and Springer’s analysis is for composite cylinders
of arbitrary layup. but treats only radial stress distributions. No analysis scems to be
available for generally anisotropic thick composite cylinders in which the stresses and strains
vary both radially and circumferentially. Also, there appeirs to be no literature pertaining
to the stress analysis of cylindrical segments.

Owing to the importance of the problem and to the lack of suitable analytical
approuaches, this investigation was undertaken to study the hygrothermal-mechanical
behavior of composite cylinders. In particular, the objective wus to develop analyses for
calculating the behavior of fiber reinforced composite cylinders and cylindrical segments
subjected to temperature, moisture and mechanical loads. In this paper the governing
cquations are described. Solutions applicable to closed cylinders are presented in a com-
panion paper (Kollir er al., 1992). Solutions for cylindrical segments and flat plates joined
by rounded corners will be presented in subsequent publications.

An analytical approach was employed in this investigation instead of a finite element
mcthod. For large, thick structures finite clement analysis may require excessive computer
memory and computational time; in contrast, the method proposed here requires less
computational ctfort,

2. PROBLEM STATEMENT

We consider a cylinder. or cylindrical segment (arc 8,). made of » layers of uni-
directional fiber reinforced composites (Figs 1 and 2). There is no restriction on either the
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Fig. 1. Geometry of the closed cylinder.

number of plies or the orientation (ply-angle) of the fibers in each ply. Hence the cylinder
may be “thick™ and the layup may be unsymmetric. However, the cylinder must be long,
so that the length L is large compared to the thickness # and to the inner r' and outer r°
radii (/L «< I, r*/L « 1, r'/L « 1). These approximations imply that cdge effects are
neglected.

The inner and outer surfaces of closed cylinders may be fixed or free (Fig. 3). The
fengthwise edges of cylindrical segments may be lixed, simply supported, or free (Fig. 4).

Both the cylinder and the cylindrical segment may be subjected to hygrothermal and
mechanical loads., These loads may vary in the radial r and circumferential 0 directions,

x

Fig. 2. Geometry of the cylindrical segment.
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Both surfaces Inner surface is fixed,
are free outer is free
Inner surface is free, Both surfaces
outer is fixed are fixed

Ve Vs
Z %

Fig. 3. The conditions on the inner and outer surfaces of the closed cylinder.

but must be independent of the axial coordinate x. Thus, the temperature AT and the
moisture content Ac inside the composite may vary with r and 0 but not with x. Here AT
and Ac arc known temperature and moisture content relative to prescribed reference values
7, and ¢,

ATWO.r) = T—=T.. Ac(0,r) =c—c,. (1)

Mecchanical loads may be imposed along the edges and on the surfaces as shown in
Figs 5 and 6.

FFor a closed cylinder, loads can be imposed on the inner and outer surfaces in the
radial, tangential, and axial dircctions, These loads, denoted by pr, pi, ptand pf', py. pi.
may vary with ¢ but not with v. Axial loads may also be placed along the edges of the
closed cylinders and these loads are denoted by N,. In addition, the cylinder may be
subjected to a torque 7 and a bending moment M. The only restriction on the mechanical

Both edges are fixed One edge is fixed,

one is hinged
One edge is fixed,
Both edges are hinged one is free

AP A

Fig. 4. The conditions along the lengthwise edges of the cylindrical segment.

SAS 29:12-D
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Fig. 5. The loads on the closed cylinder.

loads is that they must be in equilibrium, ic. under their combined action the cylinder
cannot undergo rigid body motion.

A cylindrical segment with edges unsupported may have edge loads on them as shown
in Fig. 6. There may be axial @ and shear loads @, on the edges. The lengthwise, straight
edges may also be subjected to loads @, which act normal to the plane of symmetry, or to
distributed moments Q. All these loads must be independent of x. [n addition, the segment
may be subjected to a torque T and a bending moment M. As in the case of closed cylinders,
the only restriction on these loads s that the loads must be in equilibrium and must not
result in rigid body motion.

AT, )
Acla,.r)

Or "

Fig. 6. The loads on the cylindrical segment.
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A cvlindrical segment supported along both of its longitudinal edges (simply supported
or fixed) or built in along one edge and free along the other (Fig. 4) may be subjected to
radial. circumferential, and axial loads on the inner and outer surfaces (Fig. 6). These loads
may depend on # but must be independent of x.

The objective is to find the stresses and strains inside the composite under the combined
temperature, moisture and mechanical loads described above.

3. GOVERNING EQUATIONS

The analysis is applicable to loads which result in small deformations and linearly
elastic material behavior. As described in the problem statement, all the loads. and hence
all resulting strains and stresses are independent of the axial coordinate x. Then, the
equations of equilibrium are (Love, 1944)

o l A o) )

‘t T, (1 o, Ot T g, (o, o0, (T

S N L, B g0 G0 T gy
cr roorch rétl o r r ér r rcf

where. as usual, ¢ and t represent normal and shear stresses. The strain displacement
relations are (Love., 1944)

cu ow w |
Eo= . . & = - £g= -+ - -
Y0x Toar roraoo’
w e cu Ow cu + v 3)
e = st a0 e = 4t o4 Fa= 5 2
TR0 o or Yooor o Ox TR0 Ox

where « is the normal strain and y is the engineering shear strain. w0 and w are the
displacements in the x, 0 and r directions.

For the /th layer (ply), in the x, 0, r off-axis coordinate system the stress-strain relation-
ship is (Tsat, 1988)

(o] (¢, C, Ciy 0 0 ol [ e—xAT—fAc ]
aol 1Co Co Coi 0 0 Cal | tamasAT= oA
o, Cy Cys Cyy 0O 0 C,, &—a, AT—f.Ac
wl =10 0 0 co Cy 0 - )
- 0 0 0 Cs Cy 0O Ve
| T | 1Coi Cor Coy O 0 Cuo) [7w—20AT—f,Ac]

where C, (= C,..i.j = 1,....6) are the componcents of the stiffness matrix ; x and f§ are the
thermal and moisture expansion coeflicients.

Temperature and moisture

Temperature and moisture affect the strain in a similar manner. For simplicity, here-
after we include only AT in the analysis, with the understanding that the moisture content
Ac can be included in an identical manner as the temperature.

The known temperature AT may be a function of r and 0, and may be expressed in
the form of a Fouricr serics in the ¢ direction and in the form of a power series in the ¢
direction

AT = AT (r) |cosj =0+ | ¥ AT2(r) |sinj—0 )
! 00 i=0 ! 00

=10 =0

where AT, and AT}, are constants and are given by Kollar er al. (1992). When r is in
parentheses. i is an exponent (not a superscript indicating inner radius).
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Strains and displucements
The strains inside the composite may depend on r and 8. For analytical convenience
we express the strain in three parts

€(0.r) = g,(r)+ee(B.r)+5(6.1). (6)

&, 1s the function of r only. &r and &5 depend on both 4 and r. Furthermore, the solution is
developed in such a way that in the case of ¢, and ¢ the axis of the cylinder remains straight,
while in the case of g5 the axis of the cylinder is curved. The displacements corresponding
to each of these strains are identified by the subscripts o, F and B. and are

W, 0.r) = (x.0.r)+ub(0.r) +ub(x.0.r)
U, 0,r) = L (x, 0.7) + R0, ) + 05 (x.0.r)
wi(e,0.r) = wi(x.0.r)+wk(0.r) +wi(x.0.r). (7)

The superscript / refers to the /th layer. To simplify the notation, we omit this superscript
when dealing with one layer in Sections 4-7. We retain the superscript / when analysing
multilayer laminates in Section 9.

Our task is now to derive the appropriate relationships for the nine displacement terms
on the right-hand sidc of eqn (7).

4. RADIALLY VARYING STRAINS AND STRESSES

First we analyse a problem in which the strains, and consequently the stresses, viry in
the r direction only. In this case the temperature within the composite must vary with r
only. This condition is met when j = 0 in eqn (5). Thus the expression for AT becomes

AT = Z AT, (r) (8)

=)

where AT, is defined in Kollar ez al. (1992).

The cylinder or eylindrical segment may undergo three transtations and three rotations
about the x, 1,z axes. In the problems considered here all these rigid body motions are
absent. However, for the purpose of the analysis we retain two of these motions: the
displacement along and the rotation about the x axis. Then, the most gencral form of the
displacement field, which satisfies the condition that the strain is a function of r only, is

u, = W, x+u0+ury, v,=v,xr+e,0r+v.(r), w,=w,(r) 9)
where u,, u,. r,, t, are constants. By using these displacements, the strains [eqn (3)] and

the stresses [eqn (4)] are evaluated, and the resulting stresses are substituted into eqns (2).
This procedure yields

a2 ] LN
c-u cu cot

Cssl =+ —|+Cisl == =0
B et Trer \eért

LI N
C”<a Yot ”ﬁ")-cn“; S W YC i) (10)

=0
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Table 1. Definition of the parameters in eqns (10} and (13)

J, = uCry

0: = u(Cy ~C i) +ry(Cyy~Cy2)

05 = 0,(Cry~2C1)

A= AT, [2dCo = (1 +DNCi )+ 2 Cos= (1 +DC1) + 2,(Cai = (1 + 1 C11) = 2, Cry = (1 +)C34)]

(i=0.1...)
- C:‘
“=Vcn
1 2 | .
f(r}:m(%) if ((«1)Cu~Ci#0
LR )

r

lﬂ* rr#l
ro= s () encascao

The first two of the above equations result in the following expressions for u.. ¢,

r C,s R
= —2r.
udry = u ln (R)—H:d r, Coor (i
re(r) =1 ! tog (12)
© =t r i R N (144 . -

Equation (10¢) yields

ry AT ‘ . c pt g L,
wo(ry = A, Rzt R ~C,-«-—+<>3R/“(r)+o]1e~ji(r)+ZA,R” L. (1)

B3 H

3y, 03, 03, Ay, 4 and fi(r) are parameters defined in Table 1. R is a reference radius. A
suitable choice for R is the radius of the mid-surface. w,, wy, u., 4y, ,, v, U, vy, 4,, A2
are as yet undetermined constants. Thus, there are a total of 10 unknown constants for
each ply.

Inspection of eqns (11) and (12) shows that u, is the rigid body displacement in the
axial direction, and v4(r/R) represents angular displacements about the x-axis.

The strains and stresses calculated from the above displacements u,, v,, w, are identified
by the subscript o, i.c. the resulting strain components are: £y, £uor Eror Yoror Taror Yavoe and
the resulting stress components are: 6., Gyo. Oros Toros Txros Txdo-

5. RADIALLY AND CIRCUMFERENTIALLY VARYING STRAINS AND STRESSES
(STRAIGHT AXIS)

Next we consider a cylinder, or a cylindrical segment, in which the strains and the
stresses may vary with r and 0, but where the axis of the cylinder remains straight. The
radii of curvature of the axis are related to the displacements through the expressions

w(x,0,r) 22 w(x,0.r)
e

n
Jo= ot 0=0 kt=—— 2 gt 0=
K A At 0=0; x A at =5 (14

k¥ and x* are the radii of curvature in the x~y and x-z planes.
The following form of displacements satisfies the requirement that the axis remains
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straight

ue(f.ry =y {u (r)sin j ()} y {u*(r)cos /0E U}

1=1 8]

ve(f.r) = Y {z (r) Slnj() } y { I')COSJ) ()}

r=1

welfr) = Z {u',(r) Cosjg» 0}+ E {u *(r)sin /( ()} (13)
o =1 3]

7= 1

Note that the summation of the series starts at j = 1. The oth term was discussed in
the previous section. Correspondingly, the temperature [eqn (3)] is also only evaluated for
Jj= lie

AT = }: {[Z AT/,(r)':ICOSj()—U+[Z ATHr) ]sm/() 0} (16)
j=1

i=0 i=0

In the following we derive expressions for w,, v, w, and u} ¢} w’ For simplicity we
only show the denivation for one of the terms in cach of the displacements in eqn (15) and
in the temperature [eqn (16)). The terms to be discussed in detatl are (j = 1)

I ¢ n
u,(r)sin j 0 0, v/(r)sinj ()—(), w,(r) cos j 0 0, S AT, (r)' |cos /() 0. (17)

-0

Subsequently, the results will be generalized to include every term of the series.
The strains [egn (3)] are calculated with the displacements given by eqn (17). The

stresses [eqn ()] are then evaluated with these strains together with the temperature given
in cqn (17). Substitution of the resulting stresses into the equilibrium equations [eqn (2)]
yields

Qi Qi Q[ uln) B,
(2“ Q 2 Q:_\ l'/(f) = B: (IS)
le Q_}: Q” H',(r) B‘

1~

where Q,; and the parameters By, B,, 8, are defined in Table 2. Equation (18) is a sixth
order ordinary equidimensional differential equation system. Solution of these equations
yields u,(r), v,(r), w,(r).

Solution of the homogeneous equation
When the temperature difference is zero (AT = 0), B,. B, and B, are zero (Table 2),
and egn (18) reduces to

Q Q) Qi u,(r)
Q, Qs Qv |[=0 (19)
Q; Q5 Qy w,(r)

For this homogencous equidimensional differential cquation system, we seek a solution

of the form
ry ({ry (ry
w0 =6(5). 60 =3 (3} wio=a(}) 20)
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Tabie 2. Definition of the symbols in egqn (18)

Q,

1]
|
™
.
VA
~N
¥~
—
+
m

:

:

\‘,
=
\/.

-

Ql‘ = -C,, f’; ’C.‘nf("n_)- ‘l‘
or N

Q=10+ Cu = oo =Cayf
ror

¢ 1 | NEAE!
Q.. = —Cu[fi Rl ”‘]"C::_I'(—> -3
creoordrore 0./ r

1 ¢ 1 n .
Qui=- ] AC,+Co+ — | —(Cyy+ (1)
rirt 0, r- H“
Q ¢ I ¢ n +C !
e R
¢ = . I n .
Q\:T'—"TI ((u+(:\)+/-l"((“+c::)
réro i, re 0,

ol [

. ( { e
(1|\= —-(ﬂ”:’:—(||";'+(‘::—,""(‘“I~ Iy
‘rt ror rl

).I>: ;!f

-

B= VAT, 'y =i+ Dg )]

¢ = Co 2ty + Conxa+ Coy2 + Coxy
g: = Cot b Cat, + Crx, + Coaag

gy = Cra+ Ot + O+ Cg

where y, G}, G}, G are constants. By substituting eqn (20) into eqn (19), and after algebraic
manipulations, we obtain

Gy
Ep|Grl=0 Q1)
GM

’

where the matrix E depends on the exponent ¢ und is defined in Tuble 3.
For a non-trivial solution of cqn (21), the determinant of the E matrix must be zero

det(E) = 0. (22)

The determinant of E is a sixth order polynomial in y. Since there arc only even powers of
+, the polynomial can be reduced to a third order one, and this greatly simplifics the solution.

The case when j(n/8,) # |. When j(r/0,) # 1, eqn (22) provides six independent
solutions for y, and these we denote as ¥,.71,....7s. Note that y,, y5,...,7, can be real or
complex numbers. The displacements {see eqn (20)] corresponding to each of the six y
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Table 3. The matrix E inegn (21)

e e NG ot T N
'» ConJ (00) C.o Conj (Uo) Ci=7+77) IU“(C:o‘*'/(Cm‘Cu))

\

8, ) ¢

o

E= NES . NES . o
Coil =) =Ciily+39) Cou+Coyjl ) =Cusy” J o AC+ Cay+7(Co+Cly))

©

e

n
‘ J 5 (€= Crp+ Cus)) /a‘

<

4

o

e Y .
(Ci+ Cu—7(Cai+Cu)) C::-*-C}J‘(——) =Cyy”

values can be expressed as

“hnm(r) . “ r_ % ,hnm( _ r f_ * Jhom _ G“, f ¢ ,)1
1k — MYk R/ Crk ry = 1k R/ Wk (r) = rk R (23

wherek = 1.2,.. ., 6.
The solution of the homogencous equation [eqn (19)] is then the sum of the six
displacements

13 [ O
“:mm (r) — Z ”:‘A”m (r). l,’hnm (r) — Z l‘::‘lll (r)‘ “_:mm(’,) = Z H'::““("). (24)
k—1 k=1 k-1
These equations contain I8 constants Gy, G, G (k=1.2,..., 6). The vectors

(G Gl Gl must satisty eqn (21). Hencee only six of these 18 G-values are independent.

We may select either G, Gx or Gy as an independent variable and denote the one selected
cs ol (7,;. Thus we write

by the symbol ;. Th rit

=20, or Gu=Gy or G =G, (25)

By substituting the first, second or third of eqn (25) into eqn (21) we obtain

i E., Ey | '[E,
14 22 23 0
= "'G , Gu = G
{G;Ik] M[EJ: E]:;:I [E“] ( 1% /k)
or
i ] '—E E ~‘|-—E 1]
1k tl 13 11 )
= -G, , (G =G
[G;‘/(J k_EJ[ EJ}_J _53: ( ik Ik)
or
‘] FE E —"lrE
I . _ ] 12 13 v -
!:G:v’u = O LEy Ex ._E:J} (G =G (26)

where E|,. E,,. etc. arc the clements of the matrix E (see Table 3) with  replaced by 3.
We sclect the one of the above three equations for which the coefficient matrix is non-
singular. Once the six unknowns G, (k = 1,2,...,6) arc known, GJ;, G}, and G can be
evaluated from the applicable expression in eqn (26).

The case when j(n/0,) = |. The above solution is inapplicable when j(z0,) = 1. In
this case the determinant of the matrix E has only five independent roots. It can be shown,
e.g. by the use of a symbolic manipulator, such as “*Mathematica™ (Wolfram. 1988). that
two of the y roots have the samc value and arc equal to zero. We arbitrarily select 75 and
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o as the identical terms
s =7, =0. 27N
Now, the expresstons for the displacements in eqn (23) become
hom —u hurn G* hom —_ b}
157 (r) = Gis. T(r) = 5~ wiin(r) =G5 (28)
h 13 o "
e (r) = Gle. 7e™(r) = Glg. wie™(r) = G (29)

We evaluate GJs. Gj5 and Gy, G}, from eqn (26). The components of E (£, E,,, etc.) are
calculated by setting (in Table 3) y = ys =0and y = 7, = 0. The result is

G:"S =, G;‘ = "'G;S- Gi‘ - Gl‘ G;‘b =0. Gl(‘ = _GHn Giﬁ = Glfw (30)
With reference to eqn (15) it can be shown that G5 and G,, represent rigid body
displacements in the ¢ = 0 direction.

Since 75 = 7. the displacements given by eqns (28) and (29) are identical. We now
‘seek an independent sixth solution of the form

r Ty X3 r =hom s
@ry = Ko+ L n & i) = A;,,-%—L,.,InR. ) = ,f,+1,,,,mR. 3h

By substituting cqn (31) into eyn (19), after algebraic manipulations, we obtain

Ry, I , L,
MR [+M| D, lnR+N Ligf=0 (32)
e L A

where Moand N are defined in Table 4. Equation (32) requires that the following equalitics
be satisfied

e K Cio
M5 1=0 and M|K I+N| L, |=0. (33)
L3, Cod - LLj,

The cocfficient matrix M in the first of eqn (33) is singular, and hence the solution of
this equation for [L¥, L, L}]" contains one arbitrary parameter. We denote this parameter
by G,, and write

E;‘(, = 0. L-;& = —GI(" [4.\;6 == Giﬁ' (34)

Table 4. The matrices in egn (32)

[ Can Cia Cia
M=1C, (Cpy+Cay) (Cix4Cl)
LCh (Ciy+C) (Coa+Cyy)
[ 0 Cis (Cia+Cal)
N = ~Cy 0 (Cor+C)
L—(Cit Cod = (Cit C0)) 0
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Substitution of eqns (34) into the second of eqn (33) yields

"?ﬁ Cb(s C:f, - fo, 1]
Kig | = =G| Cryp Caa+Cuy Cay+Cas |+| K (35)
“’/“6 l 0 TR

where (similarly to G} K, is an arbitrary parameter.

The displacements given in eqn (28) and egn (31) are all appropriate solutions. Hence.
if we multiply the displacements in eqn (28) by the constant K/G, s and add the resulting
displacements to the displacements in eqn (31). we obtain another set of acceptable dis-
placements. The results are

Kis
Wt (r) = @ty (r)+ G— S W (r) =
is

AI et r r
) = T+ ) = K= Geln
I

Ko r
hum({} - 'hnnr(r)+ é 3&?;"“(»") - G[-f, tn k (36)
where
Ko G Co Cae ! Cy, } 37
Kla h L Cn+Cy Coi+Ca § -

Equation (36) is the sixth independent solution we have been seeking. The homo-
geneous solution for f(n/0,) = 1 thus becomes

“:xum (f} }: h,lmm (I’), Pimm (?’} Z o hunn (T}, wfmm {?’) Z sl hom {I’) (38)

ki

wherefortk = 1,2,....5)
ry* ry horm ry
ut(r) = 7‘(5) R G ( R) s W) = ( R) (3%
andfork =6
hom >0 hmn - r fn r
whem(r) = K. (N=K,,~Guln R wen(r) =G, ln R {40)
These equations contain a total of six unknowns G, (k= 1, 2,...,6}.

Particular solution of the inhomogeneous equation [egn (18)]
A particular solution of the inhomogeneous equation [{cqn 18)] can be written in the
form

i i i+ 1 R
u;"’*{r;::z;v;:(-@ L™= TP () Lo = 29(> . @D

=} i=0 e (3
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Substitution of eqn (41) into eqn (18) yields

_ . -
p qug_
Y E| P, |= T aT,R™" . (32
i=0 P =0 q:J 0,
Lg:—(i+1Dgqs |

The matrix F, is the same as the E matrix in Table 3, with y replaced by (i+1). The
parameters ¢,.¢..q; are given in Table 2. The vector [P P% P7]' is obtained from the
equation

- .n -
P ",
" Q
P',', = {F’} - |AT/'R:+I n (43)
pr q:J 0
i o
| g2~ (i+ g,

The matrix F is singular when any one of the roots of eqn (22) (71.72..... %) 18
cqual to (i+1). This difficulty could be overcome with considerable mathematical and
computational complexity. Alternatively, this singularity can be removed without significant
loss in accuracy by changing slightly once of the stiffness values in eqn (4).

General solution of the inhomogencous equation [egn (18)]
Solution of eqn (18) is the sum of the homogencous and the inhomogencous solutions

w (r) = 1™ ) ), o) = e+ ), w () = wm )+ wr). (44)

The inhomogencous displacements are given in eqn (41) and the homogencous dis-
placements by eqns (38)-(40) for j(n/0,) = | and by eqns (23) -(24) for j(z/0,) # 1.

Complete solution
The analysis presented thus far pertains only to the first part of the series [eqns (15)
and (17)]. The second part of this series is

— u¥(r) cos ja’i 9, —ulr)cos j£~ 0, wi(r)sin jg— 0, [Z AT;(r)'] sin j 03 9. (45

i=0 o

The solution for these terms proceeds along the same line as for the “unstarred™ terms
in eqns (18)-(44). We merely need to replace in eqns (18)-(44) the “"unstarred™ constants
(G, L, L, K) with “starred” constants (G*, L*, L*, K*).

6. RADIALLY AND CIRCUMFERENTIALLY VARYING STRAINS AND STRESSES
(CURVED AXIS)

We consider the problem of a cylinder whose axis has curvatures in the x-y and x-=
planes (%, k*). We now write the displacements in the form

ug(x.0.r) = wf(x, 0. r) +ufi(x.0,r), vy(x,0,r) =v5(x,0.r)+0i(x,0,1),
wy(x, 0.r) = wi(x. 0.r) +wi(x.0,r). (46)

The first displacements on the right-hand side (superscript y) are the displacements due to
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curvature in the x—1 plane, and the second terms (superscript z) are the displacements due
to the curvature in the x-- plane. First, we derive expressions for uf. r§. w§. These
displacements are written as

,

ug(x.0.r) = k¥ xrcos O+uf(r)sinf, v§(x.0,r) =K’ % sin @+ ¢} (r) sin 0,

-

wg(x,0.r) = —x* % cos @+ wi,(r) cos 6. (47)

These displacements together with the strain-displacement eqn (3). stress-strain eqn (4)
and the equilibrium equation (2) yield

A A A ai(n —Cq,
Az Ay A || tl(r) | =R - Cy . (48)
Ay Ass A dlwj(n) 2Cy =y

A, is the same as ©Q,, in Table 2 with j(z/8,) set equal to 1.
By comparing eqns (48) and (18) we observe that the homogeneous form of these
equations (i.c. the right-hand sides sct equal to zero) are similar. Thus, by referring to eqns
(38)-(40) we can write the solution for uf,, tf,. wi; as

3

6 6
u;'hum (r) = Z “ntmn(r) . I,‘v|hnm (r) - Z l_rll‘:nm (r)' n,r'hum (r) = Z “,}vllkmm (r) (49)
k=1

k=1 k=1

o = e 0) e = ae(T) L i = me(D) o0
Ui {r) = 11y R/ ik = R} Vik ) = R

and fork =6
r r
ule () = S e () = JE = Hyln oo Wil = Hyln . (s1)

Note the similarity with eqns (39) and (40) ; / and J correspond to G and K, the only
difference being that H and J are now evaluated by eqns (25), (26) and (37) with j(=/0,) = 1.
The exponents y, are the five independent roots of eqn (22) with j(n/0,) = | and
with y5 = 0. The above homogeneous solutions [eqns (49)—(51)] contain six independent
constants H} (k = 1,2,...,6), where H represents rigid body motion in the § = O direction.
A particular solution of the inhomogeneous equation {eqn (48)] is

oy = (L), ey =s7(L), wimey = s(5) (52)
H R/’ { R/’ R/
Substitution ot eqn (52) into cqn (48) yields

s Coe—4Css Cire—2C5; Cae+2(Cip+Cus)] !

S| = '\.YR: C16—6C45 —3C44+C11 C21+3C44+2C23

S Cio—2Cio+Cys) Coa—=Cyy=2Cs;  Cp2+Cyy—4Cy;

- Cy,
* —C:| . (53)

2Cy, =Gy
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The displacements caused by curvature «* are [eqns (47). (49) and (52)]

uy(x.0.r) = K¥xr cos 8+ ujy(r) sin 6 = x?xr cos 0+ ("™ (r) + u™(r)) sin 6

- -+

X . X° . .
rp(x.0.r) = k' 5 sin O+ i (r) sin @ = k¥ - sin O+ (e (7) + o™ (r)) sin 6

-

wy(x.0.r) = —&? % cos B+ wii(r)cos § = —x? —\;— cos O+ (wi™™(r) +uw™(r)) cos 0. (54)

The displacements caused by curvature «x* can be derived in a similar manner. The
result is

u(x.0.r) = Kkixrsin 8 —uf(r) cos § = x*xr sin @ —(uf"" (r) + uf™ (r)) cos 6

% cos @—rvf(r)cos 8 = —«* %— cos 8 — (& (r) + ¢f™(r)) cos 6

ti(x.0.r) = —K?

0 -

W(3.0.7) = —~* T sin 8w (1) sin 6= =k T sin 6+ (R () + wE() sin 0. (59)

The homogeneous and particular solutions are the same as given before by eqns (49)
and (52) for the y component. The differences are that H{®, H{". H{*, H{. J4', J% and &7
are replaced by H{, H, HY, H{, J, J¢ and &".

7. STRAINS AND STRESSES

Using the expressions for the displacements derived in the foregoing sections, the
striains can be calculated from eqn (3) and the stresses from eqn (4). In the analysis of
cylinders and cylindrical scgments we will make use of the stresses obtained in this manner.
Therefore, the stresses are tabulated in Table 5. The results in this table show that the
dependence of the stresses on r and 0 are separated. The stress components with a “hat”
depend only on the radius r.

8. NUMBER OF UNKNOWN CONSTANTS

The expressions for displacements contain a number of unknown constants, as sum-
marized in Table 6. These constants must be determined by applying continuity condiiions
across ply interfaces, conditions for no rigid body motion, and appropriate boundary
conditions.

9. CONTINUITY CONDITIONS

At each ply interface the displacements and three of the stresses (o, 7,0, 7,.) must be
the same in adjacent layers. Thus, at the interface between the /and 7+ | layers (Fig. 7) the
continuity conditions given in Tables 7-10 must be satisfied.

For u,, v, and w, the equations in Table 8 represent (n—1)*10 equations for a
composite made of n layers. Each layer contains 10 unknowns, so the total number of
unknowns is 10*n. From the above set of equations all but 10 of these unknowns can be
determined.

For ug, v and wg the equations in Table 9 represent (n— 1)*6*2 equations for an n
ply composite for every Fourier term. In each layer there are 6*2 unknowns for each term.
Of these (n—1)*6*2 can be determined from these equations. There remain 6*2 unknowns
for each term.
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Table 5. The displacement. temperature and stress terms
U, Ly ¥, Up Ug. W Ug.lU'g. Wy
. o
u u,(r)sin /“‘ i —uMr)cos ,(), 4 Uy UR. Wy Ug. Ug. Wh
(rsinj -0 5 =y
r v {rysinyg - —rXrycos j -
, I“” Hr) / i
RIS ..
W w(r)cos j— 8 wHrysin f -
! 2] ! /H
i f . R
AT Y AT,r AT, () feosj =0 | ¥ ATH(r) [sinj =0
1=t) im0} Hu =) Hu
. . P 1 4 . . .
7, [-2 g, = d,cos s 0 al =d?sin ™ 0 alpg = 6l cosl) Gip = dlgsinl
, 1 IR . T
a, [ Gy, = ,,COS | i t al =alsin ,ii— 4 Gla = Gy cos U aly = dopsin )
. R e . .
a, a0 a,=d,¢08 ] i 4 gl =a’sin '()ﬁ o oy = a5y cos aly = ojgsinl)
o T . S T ¥ oy : ’ o
T Core Ty = G, SN fh o = G cos ) 0 G = oy sin ) Tun = Tog cos
. . n . LT . . .
T T Ty = G sin g, 0 T, = 0, o8 Iy 0 U = T sind T = tcos
T Ty T, = L, COS 0 0 th, = T3, SIN /” 0 Tlon = Ty toOs thn = Cusinfl

Table 6. The unknown constants in the displacements, continuity, no rigid body motion and boundary conditions

w el owl ., vy .owy uh, thowh
n n
o o=
"o, "0,
Unknowns AL A Gl k=12,....6 K HY
(one layer) ul g ul, G'y j=1,2....,number of Fouricr terms k=12...6
A A M I N HYE

Number of unknowns 10 en (2e6)n 24+(2e6)n
for cach Fourier term

Continuity conditions e (n—1) Qe6)(n—-1) (2s6)(n—1)
for cuch Fourier term

No rigid body motion | 14 =0, ¢4 =0 G =0 G;= HY =0, H* =0

Boundary conditions 8 246 2.5 246

if there are no rigid
body motions

for cach Fourier term

{ -th layer

Fig. 7. Numbering of the plies.
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Table 7. The continuity conditions at the interface between the / and (/+ 1) layers

Wix.8.r)=u"""(x.0.r)
iy =c'""(x.0.r) (r=r*"")y (I=12..... n-1)
w'(x.b.r) = w'"(x.8.r)
ol(x.0.r) = ol '(x.0.r)
b =t (xdr (r=r*"Y (=12..... n—1)

thx.bor) =S (e 0.r)

Table & The continuity conditions for u,.t,, w,

The displacement continuity conditions

o= ul!
1
ul = ul*

W) =Wt (=t

’ ]
rho=pl*
i i1
rh ="

vy =t (r="")

waln) = wit'r) (r=r"")
The stress continuity conditions
! e
au(r) = a0 '(r)
! vt !
Taalr) = Tl (1) (=1t

thalr) =t/ (r)

Table 9. The continuity conditions for uy, vy, wy

The displacement continuity conditions
w(ry =u""(r)  u(r) =ult"(r)
ey = ey ey =0 () (=t
wilr) = wit ') Wit (r) = wl" % (r)
The stress continuity conditions
al(r) = d.! '(r) dij(ry=dl""(r)
Tn(r) =, (1) 50 =65 () (r=r")

] ey : .
) =i ) =15

Table 10. The continuity conditions for ug, vy, wg

The displacement continuity conditions
ui(r) = uli* ™) i) = uli" " (r)
e =i el =it (r=rt)
WiEr) = wil* (1) wll(r) = wii* ™ (r)
The stress continuity conditions
Gialr) = dig" (r)  dli(r) = a1y ' (r)
a(r) = T55%(r)  £%a(r) = E45" () (r=rtY)

fralr) = 58 "(r)  2a(r) = €537 (n)

I5ts



i516 L. P. KoLLAR and G. S. SPRINGER

For uy. vy and wy the equations in Table 10 represent (n—1)*6*2 equations for a
composite made of 7 layers. Each layer contains 6*2 unknowns. Furthermore »¥ and x¢are
also unknowns. Hence the total number of unknowns is 6*2*n2+ 2. From the above set of
equations all but 14 of these unknowns can be determined.

10. RIGID BODY MOTION

As was discussed above (eqns 1. 12, 28 and 50). rigid body motion is represented by
the constants u}. v, G'<, G'%. H. H'?. In the absence of rigid body motion these constants
must be zero in one of the plies. For convenience. we prescribe these constants tor the
innermost ply. Thus. tor the displacements u,. ¢,. w, we have

ul =0, rj=0. (56)

For up.rp we  (j{m/0,) = 1) and for ug. vg.wy the conditions for no rigid body motion are
G/s=0, G;5=0 (57)

HY =0, H{ =0 (58)

Equations (56)-(58) eliminate 3*2 = 6 constants. The remaining constants must be
found with the aid of the continuity and boundary conditions.

L. BOUNDARY CONDITIONS

The conditions for rigid body motions and the continuity conditions provide some but
not all the equations needed to determine all the unknown constants in Table 6. The
additional equations required to determine all the constants are provided by the boundary
conditions. Appropriate boundary conditions for closed cylinders are presented in a com-
panion paper (Kollar er af., 1992). Boundary conditions for cylindrical segments, and flat
pancls joined by curved corners will be described in subsequent publications.
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